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Abstract
The boson representation of sp(4, R) algebra and two distinct deformations
of it, spq(4, R) and spt (4, R), are considered, as well as the compact
and noncompact subalgebras of each. The initial as well as the deformed
representations act in the same Fock space, H, which is reducible into two
irreducible representations acting in the subspaces H+ and H− of H. The
deformed representation of spq(4, R) is based on the standard q-deformation
of the boson creation and annihilation operators. The subalgebras of sp(4, R)
(compact u(2) and noncompact uε(1, 1) with ε = 0,±) are also deformed and
their deformed representations are contained in spq(4, R). They are reducible
in the H+ and H− spaces and decompose into irreducible representations. In this
way a full description of the irreducible unitary representations of uq(2) of the
deformed ladder seriesu0

q(1, 1) and of two deformed discrete seriesu±
q (1, 1) are

obtained. The other deformed representation, spt (4, R), is realized by means
of a transformation of the q-deformed bosons into q-tensors (spinor-like) with
respect to the suq(2) operators. All of its generators are deformed and have
expressions in terms of tensor products of spinor-like operators. In this case, a
deformed sut (2) appears in a natural way as a subalgebra and can be interpreted
as a deformation of the angular momentum algebra so(3). Its representation
in H is reducible and decomposes into irreducible ones that yields a complete
description of the same. The basis states in H+, which require two quantum
labels, are expressed in terms of three of the generators of the sp(4, R) algebra
and are labelled by three linked integer parameters.

PACS numbers: 0210, 0220, 0240, 0365

1. Introduction

Symplectic algebras enter in physical applications when operators that change the number of
particles of the system are employed. One example is a description of collective vibrational
excitations of a system of particles moving in an n-dimensional harmonic oscillator potential.

0305-4470/01/142999+16$30.00 © 2001 IOP Publishing Ltd Printed in the UK 2999
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In this paper we start by considering the simplest two-dimensional case with sp(4, R) as its
dynamical symmetry algebra. sp(4, R) is a noncompact group that is isomorphic toO(3, 2) [1].
A reduction from sp(4, R) to the u(2) = su(2) ⊕ u(1) ∼ so(3) ⊕ o(2) subalgebra gives rise
to a classification scheme with basis states that exhibit collective rotations. There are three
possible reductions to representations of the noncompact u(1, 1) = su(1, 1)⊕u(1) subalgebra
that are important for a complete classification of the basis states of a system.

Although sp(4, R) is the simplest nontrivial case of a noncompact symplectic algebra,
this structure is realized in various applications [2,3]. It also serves as an example for exactly
solvable test models [1]. The applications are related to different interpretations of the quantum
numbers of the bosons used to create its representations. In addition to its use as the dynamical
symmetry in some collective models of nuclear structure [4], sp(4, R) has been used for a
complete classification of yrast-band energies in even–even nuclei [5]. And since it is rather
easy to generalize sp(4, R) results to higher rank algebras [4], features uncovered for sp(4, R)
have extended applications, the bosonization of other symplectic algebras being a case in
point [6]. A further application of sp(4, R) is in the application of mapping methods [7],
where the main purpose is to simplify the Hamiltonian of the initial problem [8]. In all such
applications, a tensor realization of sp(4, R) algebra derived from the usual boson creation
and annihilation operators, is most convenient.

In the last decade a lot of effort, from a purely mathematical as well as a physical point
of view [9–11] has been concentrated on various deformations of the classical Lie algebras.
The general feature of these deformations is that at some limit of the deformation parameter
q, the q-algebra reverts back to a classical Lie algebra. More than one deformation can
be realized for one and the same ‘classical’ algebra, which can be exploited in different
physical applications. There are a lot of similarities between the classical Lie algebras and
their deformations, especially with respect to the action spaces of their representations. The
study of deformed algebras can also lead to a deeper understanding of the physical significance
of the deformation.

In this paper we explore boson representations of sp(4, R) algebra. We begin with the well
known representation of this algebra in terms of ‘classical’ boson creation and annihilation
operators (section 1) and consider all the subalgebras and various ways to specify basis states by
means of eigenvalues of the operators associated with them. We also introduce a deformation
of this algebra in terms of standard q-bosons, and following the same procedure we investigate
the enveloping algebra of sp(4, R) that is so obtained and explore the action of its generators
on the basis, which remains the same (section 2). We obtain another deformation of the
same algebra by transforming the q-deformed bosons into tensor operators with respect to
the compact subgroup SUq(2) defined in the previous section. In this case we use q-tensor
products to obtain its generators, which are also tensor operators in respect to SUq(2). Their
components form subalgebras in a natural way and the compact subalgebra sut (2) that is so
obtained can be interpreted as isomorphic to a deformation of the so(3) algebra (section 3). In
the last section (section 4) we investigate a representation of the basis in terms of generators
of spt (4, R) algebra, which introduces three quantum numbers for specifying states that map
onto corresponding classical results.

2. Boson representations of sp(4, R) algebra

Let us begin by recalling some features of the boson representation of sp(4, R) [4, 12]. The
operators b†

i and bi, i = ±1, which satisfy Bose commutation relations

[bi, b
†
k] = δi,k [b†

i , b
†
k] = [bi, bk] = 0 (1)
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are the natural language for a description of the two-dimensional harmonic oscillator [1]. They
act in a Hilbert space H with a vacuum |0〉 so that bi |0〉 = 0. The scalar product in H is
chosen so that b†

i is the Hermitian conjugate of bi [(b†
i )

∗ = bi] and 〈0|0〉 = 1. The vectors

|ν1, ν−1〉 = (b
†
1)
ν1(b

†
−1)

ν−1

√
ν1!ν−1!

|0〉 (2)

where ν1, ν−1 run over all non-negative integers form an orthonormal basis in H. They are
the common eigenvectors of the boson number operators N1 = b

†
1b1, N−1 = b

†
−1b−1 and

N = N1 + N−1:

N1|ν1, ν−1〉 = ν1|ν1, ν−1〉
N−1|ν1, ν−1〉 = ν−1|ν1, ν−1〉
N |ν1, ν−1〉 = ν|ν1, ν−1〉

(3)

where ν = ν1 + ν−1 and

Ni = N∗
i [Ni, b

†
i ] = b

†
i [Ni, bi] = −bi i = ±1. (4)

The boson representation of sp(4, R) is given in a standard way by means of the operators
Fi,j = b

†
i b

†
j ,Gi,j = F ∗

i,j = bibj and Ai,j = A∗
j,i = b

†
i bj + 1

2δi,j where i, j = ±1 [12]. It is
reducible and decomposes into two irreducible representations, each acting in the subspaces
H+ and H− of H labelled by the eigenvalue of the sp(4, R) invariant operator P = (−1)N :

H = H + ⊕ H− P |ϕ±〉 = ±|ϕ±〉 |ϕ±〉 ∈ H±.

In other words, H+ is spanned by the vectors (2) with ν = ν1 + ν−1 even and H− with ν-odd,
respectively.

The maximal compact subgroupU(2) ofSp(4, R) can be generated by the Weyl generators
Ai,j as well as by the well known equivalent system

I+ = b
†
1b−1 I− = I ∗

+ = b
†
−1b1

I0 = I ∗
0 = 1

2 (b
†
1b1 − b

†
−1b−1) N

(5)

that satisfies the commutation relations

[I0, I±] = ±I± [I+, I−] = 2I0
[
N, I±

] = 0 [N, I0] = 0. (6)

The operators I0, I± close the algebra su(2) ∼ so(3). The operator N generates u(1) and
plays the role of the first-order invariant (6) of U(2) = SU(2) ⊗ U(1). Each of the H+ and
H− subspaces decompose into a direct sum of eigensubspaces of N , defined by the condition
that ν is fixed:

H+ = ⊕
ν
H+

ν H− = ⊕
ν
H−

ν . (7)

An irreducible unitary representation (IUR) of U(2) is realized in each H±
ν space.

Another option for labelling the basis vectors (2) is the eigenvalues of the second-order
Casimir operator of SU(2)

I2 = 1

2
(I+I− + I−I+) + I0I0 = N

2

(
N

2
+ 1

)
(8)

and its third projection, I0

I2|i, i0〉 = i(i + 1)|i, i0〉 I0|i, i0〉 = i0|i, i0〉
where from (8) i = ν

2 = 1
2 (ν1 + ν−1), i0 = 1

2 (ν1 − ν−1) and

|i, i0〉 = (b
†
1)
(i+i0)(b

†
−1)

(i−i0)
√
(i + i0)!(i − i0)!

|0〉 ≡ |ν1, ν−1〉. (9)
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Figure 1. H+ space.

Figure 2. H− space.

Applying the raising and lowering operators I±

I±|i, i0〉 =
√
(i ∓ i0)(i ± i0 + 1)|i, i0〉 (10)

to the lowest |i,−i〉 (highest |i, i〉) weight state ν times we obtain all the basis states of a given
representation.

We are also interested in the noncompact content of the boson representation of sp(4, R).

(1) A reducible unitary representation (‘ladder series’ [13]) u0(1, 1) of the algebra u(1, 1)
with Weyl generators b†

1b1, b
†
1b

†
−1,−b−1b1,−b−1b

†
−1 acts in H. The first-order Casimir

operator of U 0(1, 1) is essentially the operator I0

C0
1 = b

†
1b1 − b−1b

†
−1 = 2I0 − 1

and hence the reduction of the ladder series into IURs (ladders) can be carried out
using I0. The spaces H± decompose into direct sums of eigenspaces of I0 labelled by
i0 = 1

2 (ν1 − ν−1)

H+ = ⊕
i0

H+
i0

H− = ⊕
i0

H−
i0
. (11)

An irreducible representation (a ladder) of the u0(1, 1) is induced in each H±
i0

space. The
operators N = N1 + N−1 and I0 = 1

2 (N1 − N−1) can be considered as another complete
set of operators, both diagonal in the basis (2) and therefore uniquely specifying the states.
We can represent this fact with the pyramids given in figure 1, where the rows representing
the IUR of U(2) are labelled by ν and the columns representing the ladders of u0(1, 1) by
i0. Each cell corresponds to one of the states |ν1, ν−1〉 defined by (2). For the H+ space
we have figure 1 and for H− figure 2.
The set of operators F0 ≡ F1,−1 = b

†
1b

†
−1,G0 ≡ G1,−1 = b1b−1 and A0 = 1

2 (N + 1) give
a representation su0(1, 1) of the su(1, 1) algebra. They commute in the following way:

[A0, F0] = F0 [A0,G0] = −G0 [F0,G0] = −2A0.

By adding the operator I0 we obtain the u0(1, 1) = su0(1, 1)⊕ u0(1) extension (5).
The second-order Casimir invariant of this subgroup is given by

C2(SU
0(1, 1)) = (A0)

2 − 1
2 (F0G0 + G0F0) = (I0 + 1

2 )(I0 − 1
2 ). (12)

The quadratic equation (i0 + 1
2 )(i0 − 1

2 ) = φ(φ + 1) has two solutions for φ: φ1 = i0 − 1
2

and φ2 = −i0 − 1
2 . Thus the discrete positive series D+ of IURs of su(1, 1) is realized
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for the real negative values of φ1,2 [12]. The corresponding spectra of φ1(i0 � 0) and
φ2(i0 � 0) are

φ1 = − 1
2 , −1, − 3

2 , . . .

i0 = 0, − 1
2 , −1, . . .

φ2 = − 1
2 , −1, − 3

2 , . . .

i0 = 0, 1
2 , 1, . . .

In the framework of su0(1, 1) a degeneracy takes place—the same IUR of su(1, 1) is
realized in H±

i0
and in H±

−i0 . This degeneracy is removed by the operator I0, i.e., after
the extension of su0(1, 1) to u0(1, 1). In each representation of D+ the spectrum of A0

= 1
2 (N + 1) is given by α0 = 1

2 (ν + 1) = −φi,−φi + 1,−φi + 2 . . . , i = 1, 2.
(2) Next we consider two mutually complementary representations su+(1, 1) and su−(1, 1)

of the algebra su(1, 1) ⊂ sp(4, R) acting in H. They are given by the operators
F± = 1

2F±1,±1, G± = 1
2G±1,±1 and A± = 1

2 (N±1 + 1
2 ), respectively, with commutation

relations [
A±, F±

] = F±
[
A±,G±

] = −G±
[
F±,G±

] = −2A±.

It is simple to see that each of the generators of SU+(1, 1) commutes with all the generators
of the other SU−(1, 1) subgroup. The second-order Casimir operators of the SU±(1, 1)
are

C2(SU
±(1, 1)) = (A±

0 )
2 − 1

2 (F±G± + G±F±) = − 3
16 . (13)

The equation φ(φ + 1) = − 3
16 has two solutions: φ±

1 = − 1
4 and φ±

2 = − 3
4 . Therefore,

two unitary representations from the D+series are realized. The corresponding spectra of
the eigenvalues α± = 1

2 (ν±1 + 1
2 ) of the operators A± for φ±

1 = − 1
4 are given by

α± = 1
4 , 5

4 , 9
4 , . . .

ν±1 = 0, 2, 4, . . .
(14)

and for φ±
2 = − 3

4 by

α± = 3
4 , 7

4 , 11
4 , . . .

ν±1 = 1, 3, 5, . . .
(15)

In this case the addition of the operatorsN∓1 considered as generators of the representations
U∓(1) of the group U(1), extend su±(1, 1) to the u±(1, 1) = su±(1, 1) ⊕u∓(1). N∓1

act as first-order Casimir operators of U±(1, 1). The spaces H+ and H− are decomposed
into direct sums of eigensubspaces of N−1and N1 as follows:

H+ = ( ∞⊕
k=0

Hν∓1=2k(φ = − 1
4 )
)⊕ ( ∞⊕

k=1
Hν∓1=2k+1(φ = − 3

4 )
)

H− = ( ∞⊕
k=0

Hν∓1=2k(φ = − 3
4 )
)⊕ ( ∞⊕

k=1
Hν∓1=2k+1(φ = − 1

4 )
)
.

(16)

In each H±
ν∓1
(φi), i = 1, 2 a IUR of u(1, 1) is realized. The degeneracy which takes

place on the level of su(1, 1) is completely removed after the extension to u±(1, 1). The
subspaces H±

ν∓1
(φi), i = 1, 2 are represented in figure 1 by the diagonals defined by the

conditions ν∓1 being fixed.
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(3) Finally we can construct another representation of su(1, 1) by the simple sum of the
generators of the SU±(1, 1)

F = 1
2 (F1,1 + F−1,−1)

G = 1
2 (G1,1 + G−1,−1)

A = 1
2 (N1 + N−1 + 1) ≡ A0.

3. q-bosons and the quantum spq(4, R) algebra

In this section using q-deformation of classical bosons, we are going to construct a q-
deformation spq(4, R) of the boson representation of the sp(4, R) algebra [10], in the same
manner as in the previous section. We start by deforming the operators b†

i and bi , i = ±1, by
means of the transformation [14]:

a
†
i =

√
[Ni]

Ni

b
†
i ai =

√
[Ni + 1]

Ni + 1
bi (17)

where [X] ≡ qX−q−X
q−q−1 . Obviously (a†

i )
∗ = ai . It is possible to interpret the deformation of the

classical boson creation and annihilation operators b†
i and bi where i = ±1, by analysing the

expansion of the coefficients in (17) in terms of the deformation parameter τ , introduced as
q = eτ :

[Ni]

Ni

= 1 +
1

6

(
N2
i − 1

)
τ 2 +

1

12

(
1

10
N4
i − 1

3
N2
i +

7

30

)
τ 4 + O

(
τ 6
)
. (18)

In this case we have an infinite expansion containing all the even powers of the deformation
parameter and also all the even powers of each of the classical operators Ni of the number of
bosons.

From (17) it is easy to obtain the q-deformed commutation relations for the deformed
oscillators

aia
†
i − q1a

†
i ai = q−Ni (19)

aia
†
i − q−1a

†
i ai = qNi (20)

[ai, a
†
k ] = 0 [a†

i , a
†
k ] = [ai, ak] = 0 i �= k.

In terms of the deformed boson operators, the basis vectors (2) are (ai |0〉 = 0)

|ν1, ν−1〉 = (a
†
1)

ν1(a
†
−1)

ν−1

√
[ν1]![ν−1]!

|0〉 ≡ (b
†
1)
ν1(b

†
−1)

ν−1

√
ν1!ν−1!

|0〉 (21)

where [X]! = [1][2][3] · · · [X]. Obviously the spectra (3) of the operators Ni , i = ±1, is
preserved (3). It is easy to see that their relations with the q-deformed bosons are the same
as (4)

[Ni, ai] = −ai [Ni, a
†
i ] = a

†
i . (22)

The q-boson representation of a q-deformed algebra spq(4, R) acting in the Fock space
H can be realized by the operators:

F
q

i,j = a
†
i a

†
j G

q

i,j = (F
q

j,i)
∗ = aiaj i, j = ±1

J± = a
†
±1a∓1 J0 = 1

2 (N1 −N−1) ≡ I0 N = N1 + N−1.
(23)

In this representation the raising and lowering operators F
q

i,j , G
q

i,j and J+, J− = J ∗
+ are

deformed. The complete set of operators N and I0 used in the sp(4, R) case is retained after
the deformation. This allows one to rewrite the basic states (21) in the form (compare with (9))

|ν1, ν−1〉 == (a
†
1)

j+m(a
†
−1)

j−m
√

[j + m]![j −m]!
|0〉
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where

N |j,m〉 = 2j |j,m〉 J0|j,m〉 = m|j,m〉 (j ≡ i, m ≡ i0).

It can be checked directly that[
J±, N

] = 0 [J0, N ] = 0[
F
q

i,j , N
]

= −2Fq

i,j

[
G
q

i,j , N
]

= 2Gq

i,j .

It follows that in this case the operator P = (−1)N also commutes with all the elements of
the representation of spq(4, R) considered. In other words, the decomposition H = H + ⊕
H− remains the same after the deformation. Thus the q-boson spq(4, R) representation
decomposes into two irreducible ones acting in H+ and H−, respectively.

The reduction to subalgebras is the same as in the nondeformed case. In H there is a
reducible representation of uq(2) given by N and the operators J±, J0 which commute in the
following way:[

J0, J±
] = ±J±

[
J+, J−

] = [2J0]. (24)

Since the same operator N acts also as a first-order invariant of uq(2), the decomposition (7)
of the spaces H+ and H− remains after the deformation. In each of the H±

ν spaces there also
acts an IUR of suq(2) generated by J0, J±. The second-order Casimir operator in this case is
given by the operator

J2 = 1
2 (J+J− + J−J+) + 1

2 ([J0][J0 + 1] + [J0][J0 − 1])

= J+J− + [J0][J0 − 1] = J−J+ + [J0][J0 + 1] =
[
N

2

] [
N

2
+ 1

]
. (25)

Its eigenvalues equation has the form

J2|j,m〉 = [j ][j + 1]|j,m〉.
The action of the deformed J± is

J±|j,m〉 =
√

[j ±m + 1][j ∓m]|j,m〉. (26)

By acting with J∓ on the highest (lowest) weight states |j, j〉 (|j,−j〉) 2j times we obtain
all the basis in the space H±

ν of a given IUR of suq(2) (a row in the diagrams in figure 1).
So in the context of boson spq(4, R) representation, we have a full description of IURs of the
deformed suq(2) algebra.

Thus far we have focused on compact structures; we now turn to a consideration of
noncompact cases.

(1) In the H space, a deformation u0
q(1, 1) [14] of the u0(1, 1) algebra acts. It is generated by

the operators

K0
+ = F

q

1,−1 = a
†
1a

†
−1 K0

− = G
q

1,−1 = a1a−1

K0
0 = 1

2 (N + 1) J0

which have the following commutation rules:[
K0

0 ,K
0
±
] = ±K0

±
[
K0

+,K
0
−
] = −[2K0

0 ][
K0

0 , J0
] = 0

[
K0

±, J0
] = 0.

The reduction of H to eigenspaces of the operator J0 = I0 (11) is invariant with respect
to the deformation. So the IURs (ladders) of u0

q(1, 1) act in H±
m, m ≡ i0. IURs of
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su0
q(1, 1) ⊂ u0

q(1, 1) and generated by K0
±,K

0
0 also act in H±

m. The second-order Casimir
invariant of SU 0

q (1, 1) is given by

(K0)2 = 1
2 ([K

0
0 ][K0

0 + 1] + [K0
0 ][K0

0 − 1])− 1
2 (K

0
+K

0
− + K0

−K
0
+)

≡ [K0
0 ][K0

0 + 1] −K0
−K

0
+

≡ [K0
0 ][K0

0 − 1] −K0
+K

0
− = [J0]2 − [

1
2

]2
. (27)

The last expression is obtained with the help of the relations

K0
+K

0
− =

[
N

2

]2

− [J0]2

[
K0

0

] [
K0

0 − 1
] =

[
N

2

]2

−
[

1

2

]2

.

Hence the eigenvalues of (K0)2 on the basis vectors are

(K0)2|j,m〉 = (
[m] +

[
1
2

] )(
[m] − [

1
2

] )|j,m〉.
The equation (

[m] +
[

1
2

] )(
[m] − [

1
2

] ) = φq
(
φq + 2

[
1
2

] )
has two solutions for φq : φ

q

1 = [m] − [
1
2

]
; and φ

q

2 = −[m] − [
1
2

]
. Imposing φq < 0 we

obtain for q > 0 a description of the deformed discrete series D+
q of su0

q(1, 1). The spectra
simultaneously run by φqi and m are, respectively, for φq1 < 0 (m � 0)

φ
q

1 = − [ 1
2

] −2
[

1
2

] −[1] − [
1
2

] − [ 3
2

]− [
1
2

] · · ·
m = 0 − 1

2 −1 − 3
2 · · ·

and for φq2 < 0 (m � 0)

φ
q

1 = − [ 1
2

] −2
[

1
2

] −[1] − [
1
2

] − [ 3
2

]− [
1
2

] · · ·
m = 0 1

2 1 3
2 · · ·

A degeneracy of the same type as in the nondeformed case takes place because of the quadratic
dependence on [J0] in (27). We should, however, emphasize that in this case the degeneracy
is also removed by the operator J0, which remains nondeformed and acts as a first invariant of
u0
q(1, 1). The spectrum of K0

0 = 1
2 (N + 1), which is also a nondeformed operator, is related to

the nondeformed φ (φq→q→1φ), and so we have
1
2 (ν + 1) = −φ,−φ + 1,−φ + 2, . . . .

(2) At the end we will discuss the deformations u±
q (1, 1) [14] of the two mutually

complementary representations u±(1, 1), each realized by only one kind of q-boson. The
operators

K±
+ = 1

[2]
F
q

±1,±1 = 1

[2]
a

†
±1a

†
±1 K±

− = 1

[2]
G
q

±1,±1 = 1

[2]
a±1a±1

K±
0 = 1

2 (N±1 + 1
2 ) N∓1

(28)

commute among themselves in the following way:[
K±

0 ,K
±
±
] = ±K±

±
[
K±

+ ,K
±
−
] = −[2K±

0 ]2[
K±

0 , N∓1
] = 0

[
K±

± , N∓1
] = 0
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where the notation [X]m ≡ qmX−q−mX
qm−q−m applies. The nondeformed operators N∓1 extend the

su±
q (1, 1) to u±

q (1, 1) and act as first-order Casimir invariants. The second-order Casimir
invariants have a slightly modified form (compare with (27))

C2{SU±
q (1, 1)} = [K±

0 ]2[K±
0 + 1]2 −K±

−K
±
+

= [K±
0 ]2[K±

0 − 1]2 −K±
+ K

±
− .

In this case we have the following expressions:

K±
−K

±
+ = 1

[2]2

[
N± + 1

] [
N± + 2

]
K±

+ K
±
− = 1

[2]2

[
N±
] [
N± − 1

]

= 1

[2]2

{[
1

2
(2N± − 1)

]2

−
[

1

2

]2
}

[K±
0 ]2[K±

0 − 1]2 = 1

[2]2

{[
1

2
(2N± − 1)

]2

− 1

}
.

As a result we obtain

C2{SU±
q (1, 1)} = (K±)2 = 1

[2]2

([
1

2

]2

− 1

)

= ([
1
4

]
2 − [

1
2

]
2

) ([
1
4

]
2 +

[
1
2

]
2

)
.

In this case the q-deformed equation

(K±)2 =q ϕ± (qϕ± + 2
[

1
2

]
2

)
has the solutions

qϕ±
1 = [

1
4

]
2 − [

1
2

]
2

qϕ±
2 = − [ 1

4

]
2 − [

1
2

]
2

which means that in H space a discrete series of two q-deformed representations of suq(1, 1)
is realized for each kind of q-boson (with index +1 or −1). The spectra of K±

0 correspond
to the limit qϕ±

i →
q→1

ϕ±
i , i = 1, 2 and coincide with the spectra of the operators A± in

the nondeformed picture (see (14) and (15)). Here, again the extension from su±
q (1, 1) to

u±
q (1, 1) = su±

q (1, 1) ⊕ u∓(1) is realized by adding the operators N∓1. Thus the degeneracy
is eliminated in the same way as in the nondeformed case. Now the spaces in which the
irreducible boson representations of the classical u±(1, 1) and q-deformed u±

q (1, 1) act are the
same and the decompositions (16) are the same, since we have

Hν∓
(
qϕ±

1 = − [ 1
4

]
2 − [

1
2

]
2

) ≡ Hν∓
(
α±

1 = − 3
4

)
Hν∓

(
qϕ±

2 = [
1
4

]
2 − [

1
2

]
2

) ≡ Hν∓
(
α±

2 = − 1
4

)
.

4. Deformation in terms of suq(2) tensor operators

The q-deformed bosons a†
i and ai , i = ±1, are not components of tensor operators with

respect to the standard suq(2) defined in the previous section [9, 15]. However, the following
nontrivial modification of the creation and annihilation operators for k = ±1 introduced in
equations (17) and (21):

t
†
k = q

k
4 a

†
kq

kN−k
2 (29)

tk = q− k
4 a−kq

−kNk
2 (30)
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transforms these operators [17] into two-dimensional conjugated, spinor-like (of rank 1
2 )

tensors, (t†
k )

∗ = t−k , with respect to suq(2). These deformations can be related to the classical
bosons b†

i , bi , i = ±1, by means of their transformations to q-deformed oscillators (17).
From the oscillator commutation relations (19) and (21) we obtain the following

commutation relations:

[ tk, t
†
l ]qρ = q− k

2 δk,−lq−2J0

[ t†
k , t

†
l ]qσ = [ tk, tl]qσ = 0

ρ = l − k

2
= −σ l, k = ±1.

(31)

In this case another q-deformation, spt (4, R), of sp(4, R) algebra, with generalized Gauss
decomposition

G = g− ⊕ h⊕ g+

is constructed by the tensor products of the fundamental oscillator representation for suq(2) (29)
and (30)

( t ⊗ t )lm := T l
m ⊇ g+ l = 1,m = 0,±1 (32)

( t† ⊗ t† )lm := T̃ l
m ⊇ g− l = 1,m = 0,±1 (33)

( t† ⊗ t )lm := Ll
m ⊇ h l = 0, 1,m = −l,−l + 1, . . . , l. (34)

This spt (4, R) algebra [17] is decomposed in a natural way into a deformed compact
subalgebra h = sut (2)⊗ ut (1) that is generated by the spherical tensors L1

m (m = 0,±1) and
L0

0 (34 ) and g+ and g−, which are two q-nilpotent subalgebras containing the components of
the two conjugated first-rank tensors T 1

m (m = 0,±1) (32) and T̃ 1
m (m = 0,±1) (33). In this

case the sut (2) generated by the components of a first-rank tensorL1
m (m = 0,±1) (34) can be

interpreted [19] as isomorphic by construction to a deformation of so(3)—the classical algebra
of the angular momentum. Using the q-deformed realization [15] of the Clebsh–Gordon
coefficients for suq(2) (23), we obtain the following explicit expressions for the operators (32),
(33) and (34) in terms of the q-spinors (29) and (30):

T 1
1 = t

†
1 t

†
1 = (T̃ 1

−1)
∗

T 1
−1 = t

†
−1t

†
−1 = (T̃ 1

1 )
∗

T 1
0 = q− 1

2

√
[2]t†

1 t
†
−1 = (T̃ 1

0 )
∗

(35)

L1
1 = t

†
1 t1 = q− 1

2 J+q
−J0 = (L1

−1)
∗

L1
−1 = t

†
−1t−1 = q

1
2 J−q−J0 = (L1

1)
∗.

(36)

The above eight operators are the q-tensor analogues of the deformed raising and lowering
generators of spq(4, R). Furthermore we consider the operators

N1 = t
†
1 t−1 = q

1
2 [N1]qN−1 N−1 = t

†
−1t1 = q− 1

2 [N−1]q−N1

t−1t
†
1 = q

1
2 [N1 + 1]qN−1 t1t

†
−1 = q− 1

2 [N−1 + 1]q−N1
(37)

obtained by means of the substitutions (29) and (30). It must be noted that in this case these are
deformed operators and do not have expression in terms of classical bosons unlike the boson
number operators, N1and N−1, used in the case of spq(4, R).

By means of an expansion similar to the one introduced in (18) it is easy to verify the
mixing of two kinds of oscillators k = ±1 introduced through the use of tensor operators

[Nk] q
±N−k = Nk ±NkN−kτ + 1

6Nk

(
3N2

−k + N2
k − 1

)
τ 2

± 1
6NkN−k

(
N2
k − 1 + N2

−k
)
τ 3 + O

(
τ 4
)
. (38)
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It is simple to see that the operators N1 and N−1 belong to the enveloping algebra of the
classical oscillators. In (38) all the powers of the deformation parameter τ and all the degrees
of the two ‘classical’ operators Nk = b

†
kbk for k = ±1 appear. Using (17), (29), and (30) we

have the following relations:[
Nk, t

†
k

]
= t

†
k

[
Nk, t−k

] = −t−k[
Nk, t

†
−k
]

= 0 [Nk, tk] = 0

and as a result we have the correct tensor properties[
J0, t

†
k

]
= k

2
t

†
k [J0, tk] = k

2
tk.

The third component L1
0 and scalar operator L0

0 are obtained as

L1
0 = 1

[2]
(q[N1]qN−1 − q−1[N−1]q−N1) = 1

[2]
(q[N1][N−1 + 1] − q−1[N−1][N1 + 1])

L0
0 = ([N1]qN−1 + [N−1]q−N1) = [N ].

(39)

Using (31) we find the commutation relations (32)–(34)

[L1
+1, L

1
−1] = [2]L1

0q
−2J0; [L1

0, L
1
±1] = ±q∓1L1

±1q
−2J0 . (40)

From (40) it is obvious that the components of the first-rank tensors L1
m (m = 0,±1) close

in a natural way on another deformation, sut (2), of the classical su(2). The scalar operator
L0

0 = [N ] commutes with all the components of the first-rank tensors L1
m (m = 0,±1)[

[N ], L1
m

] = 0

and yields decomposition ut (2)= sut (2)⊕uq(1)with a first-order Casimir invariant [N ]. The
second-order Casimir operator for SUt(2) is calculated as the scalar product

−
√

[3](L ⊗ L)0 = qL−1L+1 + q−1L+1L−1 − L0L0 = 1

[2]
[N ][N + 2]. (41)

For completeness we present all the other commutation relations of the tensor
operators (32)–(34) in a slightly different form than in [16]. The commutators of L1

±1 with
the pair raising and lowering operators define their transformation properties in respect to the
q-deformed so(3) subalgebra

[L1
±1, T̃

1
m] = ±q−(m±1)

√
[1 ∓m][1 ±m + 1]T̃ 1

m±1q
−2J0

[L1
±1, T

1
m] = ±q−(m±2)

√
[1 ∓m][1 ±m + 1]T 1

m±1q
−2J0 .

(42)

Hence the operators T̃ 1
m and T 1

m,m = 0,±1 form two conjugated vectors with respect to so(3)
subalgebra. From the following commutators for k = ±1 and m = ±1:

[T̃ 1
m,Nk]q2k = δm,−kq

3
2 k[2]T̃ 1

mq
−2J0

[Nk, T
1
m]q2k = δm,kq

− k
2 [2]T 1

mq
−2J0

[T̃ 1
0 ,Nk]q2k =q k

2 T̃ 1
0 q

−2J0 [Nk, T
1

0 ]q2k =q k
2 T 1

0 q
−2J0

(43)

it is easy to obtain the commutation relations of T̃ 1
m and T 1

m (m = 0,±1)with the operators (39).
The pair operators T 1

m, T̃ 1
m generate the two q-nilpotent algebras g+, g− and fulfil the

following q-commutation relations:

[T 1
m1
, T 1

m2
]q2(m1−m2) = 0 [T̃ 1

m1
, T̃ 1

m2
]q2(m1−m2) = 0. (44)

The commutation relations between the T 1
m and T̃ 1

m close in terms of the components of the
angular momentum q-analogue (33). The subset with m1 + m2 �= 0 can be presented in a
unified way as

[T 1
m1
, T̃ 1

m2
]q2(m2−m1) = −q−m1

√
[2][2(m2 −m1)]L

1
m1+m2

q−2J0 (45)
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while for m1 + m2 = 0 we obtain

[T 1
1 , T̃

1
−1]q−4 = −[2]{q−2q−2J0 + q

1
2 [2]N 1}q−2J0

[T 1
0 , T̃

1
0 ] = [2][N + 1]q−2J0

[T 1
−1, T̃

1
1 ]q4 = −[2]{q2q−2J0 + q− 1

2 [2]N−1}q−2J0 .

(46)

In the limit q → 1 these reproduce the commutation relations of ‘classical’ sp(4, R)
algebra, which has a lot of interesting applications in nuclear physics. It should be noted that
in this case we do not obtain a simple generalization of the noncompact suε(1, 1) (ε = 0,±)
subalgebras of sp(4, R) as is the case with q-bosons. By analysing relations (43) and (46)
it can be seen that they close in the enveloping algebras of the respective classical uε(1, 1)
(ε = 0,±). Actually this is a general property of this tensor deformation of sp(4, R) because
of the appearance of the q−2J0 →

q→1
1 factors on the right-hand side of all commutation relations.

The problem of eliminating this is solved in [17].
Working in terms of tensor operators makes the evaluation of the most general spt (4, R)

invariant operator with respect to the q-deformed so(3) subalgebra quite simple. It is
constructed as a linear combination of the scalar products of (32)–(34) that preserve J0

S2 = s1T
1
k · T̃ 1

−k + s2T̃
1
k · T 1

−k + s3L
1
k · L1

−k + s4 [N ]2

= s1 [N ] [N − 1] + s2 [N + 2] [N + 3] + s3 [N ] [N + 2] + s4 [N ]2 . (47)

From this expression it is clear that four additional phenomenological parameters (si with
i = 1, 2, 3, 4) together with the deformation parameter are introduced in the invariant. This
allows for a larger variety of interactions in the corresponding Hamiltonian problem.

5. The basis states in the case of q-tensor spt(4, R) algebra

Now consider H as the space of the action of the q-deformed tensor representation of spt (4, R)
described in the previous section. In terms of the spinor-like creation and annihilation operators,
(29) and (30), the basic states (2) have the form

|ν1, ν−1〉 = q− 1
4 (ν1−ν−1)− 1

2 ν1ν−1
(t

†
1 )

ν1(t
†
−1)

ν−1

√
[ν1]![ν−1]!

|0〉 (48)

which introduces a dependence on q. It is easy to check that the operatorP = (−1)N commutes
with all the generators, (32)–(34), so in the q-deformed tensor case the spt (4, R) representation
is also reducible and splits into two irreducible ones acting in the H+ and H− subspaces.

In what follows we will consider the space H+ to have ν = ν1 + ν−1 even. The states of
H− can be obtained from the ones in H+ with the help of the operators t†

k and tk (k = ±1).
The later can be considered to be the odd generators of the superalgebraic extension of even
spt (4, R) [17].

Looking forward to future applications we represent the basic states |ν1, ν−1〉 ∈ H+ as

|n1, n0, n−1〉 = η(n1, n0, n−1)(T
1

1 )
n1(T 1

0 )
n0(T 1

−1)
n−1 |0〉 ≡ |ν1, ν−1〉 (49)

where ni (i = 0,±1) are integers restricted by the linkages

ν1 = 2n1 + n0 ν−1 = 2n−1 + n0 (50)

and η(n1,n0, n−1) is the normalization factor given by

η(n1,n0, n−1) = q− 1
2 (n1−n−1)−n1(n0+n−1)−n−1(n0+n1)

√
[2]n0 [2n1 + n0]![2n−1 + n0]!

. (51)

This representation of the basic states is useful for a consideration of the appropriate mapping
procedures [18] for spt (4, R) algebra. It should be noted that in this case we use the
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Figure 3.

Figure 4.

ordering (49) of the components of the vector T 1
m (m = 0,±1) (32). Other orderings can

be obtained from this by means of the commutation relations (44). The q-factors that will
appear in such a result can be incorporated into the normalization coefficients. Keeping in
mind (3) and (37) it is obvious that

N1|ν1, ν−1〉 = [ν1]qν−1 |ν1, ν−1〉 N−1|ν1, ν−1〉 = [ν−1]q−ν1 |ν1, ν−1〉 (52)

[N ]|ν1, ν−1〉 = [ν]|ν1, ν−1〉. (53)

Therefore, passing to representation (49) and in view of (50) one finds

N1|n1,n0, n−1〉 = [2n1 + n0]q2n−1+n0 |n1,n0, n−1〉
N−1|n1,n0, n−1〉 = [2n−1 + n0]q−2n1−n0 |n1,n0, n−1〉

and

[N ]|n1,n0, n−1〉 = [2n]|n1,n0, n−1〉.
Note that

2n = 2n1 + 2n0 + 2n−1 = ν j0 = 1
2 (ν1 − ν−1) = n1 − n−1.

Now we can consider two extreme cases for the possible values of the additional quantum
number n0.

(1) n0 takes on minimal values. Since we are in H+ space the integers ν1 and ν−1 are
simultaneously even or odd. If ν1 and ν−1 are even (min n0 = 0) with the help of (31) we
obtain from (48)

|n1, 0, n−1〉 = q− 1
2 (n1−n−1)−2n1n−1

(T 1
1 )

n1(T 1
−1)

n−1

√
[2n1]![2n−1]!

|0〉

= q− 1
4 (ν1−ν−1)− 1

2 ν1ν−1
(T 1

1 )
ν1
2 (T 1

−1)
ν−1

2

√
[ν1]![ν−1]!

|0〉. (54)

If ν1 and ν−1 are odd (min n0 = 1) we find that

|n1, 1, n−1〉 = q− 1
2 (3n1+n−1)−2n1n−1

(T 1
1 )

n1T 1
0 (T

1
−1)

n−1

√
[2][2n1 + 1]![2n−1 + 1]!

|0〉

= q− 1
4 (ν1−ν−1−2)− 1

2 ν1ν−1
(T 1

1 )
ν1−1

2 T 1
0 (T

1
−1)

ν−1−1
2

√
[2][ν1]![ν−1]!

|0〉.
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In this way the q-deformed spinors are coupled to maximal degrees in n1 and n−1 for the
components T 1

1 and T 1
−1, respectively. Representing the basis states in H+ as |n1, n0, n−1〉

vectors, in the case of min n0 = 0 or 1 we can redraw the pyramid in figure 1 as presented
in figure 3.
From figure 3 it is easy to see that we can obtain each state from the left (right) diagonals
of the pyramid by the action on the minimal-weight state of the raising operators T1(T−1),
respectively.

(2) n0 takes on maximal values. In this case we have n−1 = 0 or n1 = 0 at ν1 �= ν−1 and
n−1 = n1 = 0 at ν1 = ν−1. There are two possibilities as presented in figure 4.
On the left-hand side of figure 1, where ν1 � ν−1 and the coupling of T 1

0 (n−1 =
0,max n0 = ν−1) is to the maximal degree

|n1, n0, 0〉 = q− 1
2 n1−n1n0

(T 1
1 )

n1(T 1
0 )

n0

√
[2]n0 [2n1 + n0]![n0]!

|0〉

= q− 1
4 (ν1−ν−1)− 1

2 (ν1−ν−1)ν1
(T 1

1 )
1
2 (ν1−ν−1)(T 1

0 )
ν−1

√
[ν1]![ν−1]![2]ν−1

|0〉. (55)

For the states from the right from the central ladder (ν1 � ν−1, n1 = 0,max n0 = ν1) we
get the expressions

|0, n0, n−1〉 = q− 1
2 n−1−n−1n0

(T 1
0 )

n0(T 1
−1)

n−1

√
[2]n0 [n0]![2n−1 + n0]!

|0〉

= q− 1
4 (ν1−ν−1)+ 1

2 ν1(ν1−ν−1)
(T 1

0 )
ν1(T 1

−1)
1
2 (ν−1−ν1)

√
[ν1]![ν−1]![2]ν1

|0〉.

In this case (max n0 = ν1 or ν−1) the table of the basic states has the form as presented in
figure 4.

This case corresponds to a coupling to a maximum degree for the operator T0. With it we
move along the columns by acting on the minimal-weight state an infinite number of times.
These two forms for the basis states are equivalent. The transition between Case 1 and Case 2
is realized by means of the relation

(T 1
0 )

2 = q−1[2]T 1
1 T

1
−1. (56)

We now give the action of the q-deformed tensor representation of the algebra sut (2) ∼
sot (3) with generators L1

m (m = 0,±1). First note that

[L1
m,N ] = 0 m = 0,±1.

From decomposition (7) one can observe that in each subspace Hν (ν = 2n) of H+ an
irreducible representation of sut (2) acts. The eigenvalue of the second-order Casimir operator
for a given irreducible representation is 1

[2] [2n][2n + 2] (41). Furthermore we know the action

of the raising and lowering operators L1
±1 for n fixed in the case when n0 = max n0 = ν1 or

ν−1. Along the rows given by ν = 2n at ν1 � ν−1 we move by acting with the operator (L1
−1)

k

(k � n) on the highest-weight state |n1 = n, 0, 0〉

(L1
−1)

k|n, 0, 0〉 = q− 1
2 k(2n−k)

√
[2n]![k]!

[2n− k]!
|n− k, k, 0〉.

Furthermore, for ν1 � ν−1

(L1
−1)

k|0, n, 0〉 = q
1
2 k

2

√
[n + k]!

[n− k]!
|0, n− k, k〉
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and therefore

(L1
−1)

2n|n, 0, 0〉 = [2n]!|0, 0, n〉.
For the action of (L1

+1)
k (k � n) on the lowest weight vector |0, 0, n〉 at ν1 � ν−1 we have that

(L1
+1)

k|0, 0, n〉 = q
1
2 k(2n−k)

√
[k]![2n]!

[2n− k]!
|0, k, n− k〉

and from the centre for ν1 � ν−1 we obtain the result

(L1
+1)

k|0, n, 0〉 = q− 1
2 k

2

√
[n + k]!

[n− k]!
|k, n− k, 0〉

and it therefore follows that

(L+1)
2n|0, 0, n〉 = [2n]!|n, 0, 0〉.

The operators L1
±1do not differ essentially from the operators J± (36) and so their action on

the basis states is easily obtained by means of (26) if we take into account the appropriate
q-factors and the relations j = ν

2 = n and j0 = n1 − n−1. The eigenvalues of the operator
L1

0 (39) on the basis states are given by

L1
0|n1, n0, n−1〉 = 1

[2]
{q[2n1 + n0][2n−1 + n0 + 1]|n1, n0, n−1〉

−q−1[2n−1 + n0][2n1 + n0 + 1]|n1, n0, n−1〉}.
Unlike J0, L1

0 has different eigenvalues for each step of a given ladder.

6. Conclusions

In this paper the boson representation of sp(4, R) algebra and two different deformations of it,
spq(4, R) and spt (4, R), were considered. The initial as well as the deformed representations
act in the same Fock space H. All three are reducible and each one is decomposed into two
irreducible representations acting in the subspaces H+ and H− of H.

The deformed representation spq(4, R) is based on the standard q-deformation of the
two-component Heisenberg algebra, realized in terms of creation and annihilation operators.
In this case eight of the ten generators are deformed, but the complete set of the boson number
operatorsN1 andN−1 (or their linear combinationsN and J0) are preserved as in the ‘classical’
case. The latter cannot be expressed in terms of deformed bosons. The subalgebras of the boson
sp(4, R) (the compact u(2) and the noncompact uε(1, 1)with ε = 0,±) are also deformed and
their deformed representations are contained in spq(4, R). They are reducible in the spaces
H+ and H− and decompose into irreducible ones. In this way a full description of the IURs
of uq(2) of the deformed ladder series u0

q(1, 1) and of two deformed discrete series u±
q (1, 1)

were obtained.
An open question is the possibility of constructing in the spq(4, R) framework other series

of representations, for example, by means of non-Fock bosons [20, 21].
The other deformed representation, spt (4, R), is realized by means of a transformation

of the q-deformed bosons into q-tensors (spinor-like) with respect to the suq(2) operators.
Unlike spq(4, R), the spt (4, R) generators are deformed and have expressions in terms of
tensor products of spinor-like operators. The important result in this case is the appearance
of a deformed sut (2), which can be interpreted as a deformation of the angular momentum
algebra so(3). Its representation in H is reducible and is decomposed into irreducible ones,
giving in this way a full description. In a future application, the dependence of the two quantum
number basis states in H+ will be presented in terms of three linked integer parameters.
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The reductions into subalgebras (compact and noncompact) of sp(4, R) and its
deformations give rise to the possibility of different models with dynamical symmetries. In
any physical interpretations of the results it is important to pay attention to the fact that the
deformations do not change the basis states in the Fock space, only the action of the operators
on them. This, with a view towards applications, gives rise to richer choices for the operators
associated with the observables—nondeformed, as well as deformed. In Hamiltonian theory
this implies a dependence of the matrix elements on the deformation parameter, leading to
the possibility of greater flexibility and richer structures within the framework of algebraic
descriptions.

An interesting future development, aimed at physical applications, is the description
of the compact and noncompact contents of q-deformed symplectic algebras of higher
dimension [22].
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